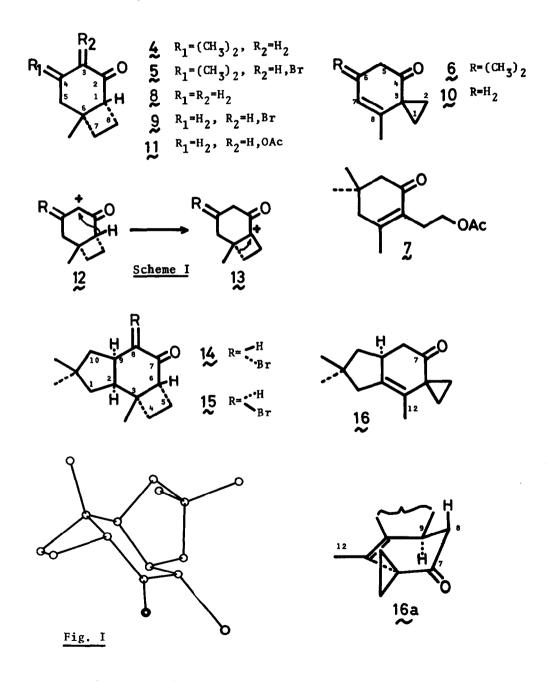

NEW RING CONTRACTION OF CYCLOBUTYL KETONES TO CYCLOPROPYL KETONES SYNTHESES OF $\Delta^{2(3)}$, 7(13) - ILLUDADIENE AND $\Delta^{2(3)}$ - 76 - ILLUDENOL

> Yasufumi Ohfune, Shunjiro Misumi, Akio Furusaki, Haruhisa Shirahama and Takeshi Matsumoto

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan


(Received in Japan 6 November 1976; received in UK for publication 7 December 1976)

We should like to describe here a new ring contraction of cyclobutyl ketones to cyclopropyl ketones through probable intermediary formation of 1-acyl cyclobutyl cations, and application of the reaction to the biogenetic-type syntheses of $\Delta^{2(3),7(13)}$ -illudadiene $1^{1,2}$ and $\Delta^{2(3)}$ -7 β -illudenol 2 from 13-norprotoilludan-7-one 3^{3} .

Bromination of cis-4,4,6-trimethyl-bicyclo[4.2.0]octan-2-one 4^4 with bromine $(CC1_4, 0^\circ)$ gave regioselectively 1 β ,3 α - and 1 β ,3 β -bromoketones $5^{5,6}$ (100%), which on treatment with AgOAc in AcOH (120°, 6hr) afforded spiro[2.5]octenone 5^5 [57%; oil; nmr(CC1₄) δ 1.04 (2H, m, AA' of an AA' BB' system), 1.06 (6H, s), 1.28 (2H, m, BB'), 1.47 (3H, d, J=1.5Hz), 2.28 (2H, s), 5.50 (1H, m); ir(neat) 3070, 1708, 1655cm⁻¹] and acetoxy ketone 2^5 [28%; oil; nmr(CC1₄) δ 1.03 (6H, s),

1.95 (6H, s), 2.15 (4H, s), 2.56, 3.95 (each 2H, A_2X_2 t, J=7Hz); ir(neat) 1745, 1665, 1635cm⁻¹]. The structure of \mathcal{I} was acertained by leading 6 to \mathcal{I} by heating in AcOH (120°, 6hr; 100%), through a Michael type reaction. On bromination of cis-6-methyl-bicyclo[4.2.0]octan-2-one $\frac{8}{2}^7$ (Br₂, CCl₄, 0°), 3-bromoketone $\frac{9}{2}^{5,6}$ was obtained (64%). Similar treatment of 9 with AgOAc in AcOH (120°, 6hr) afforded spiro[2.5]octenone 10^5 [40%; oil; nmr(CCl₄) δ 1.02 (2H, m, AA' of an AA' BB' system), 1.33 (2H, m, BB'), 1.49 (3H, broad s), 2.40 (4H, broad s), 5.16 (1H, m); ir(neat) 3070, 1705cm⁻¹] together with a substitution product 3-acetoxyketone 11^{5} [47%; oil; ir(neat) 1755, 1720cm⁻¹]. The new unusual rearrangement may be explained by assuming primary formation of α -keto carbenium ion⁸ 12, which rearranges to 1-acyl cyclobutyl cation 13 via 1,3-hydride shift (Scheme I). Bromination of d,1-13-norprotoilludan-7-one 3 with Br_2 in CCl_A (0°) afforded an epimeric mixture of 7-keto-8-bromides 14 and 15 in 92% yield (14/15=3/1, bynmr) as crystals and repeated recrystallization (n-hexane) of the mixture afforded pure 8_{α} -bromide 14⁵, mp 78~79°. The detailed conformation of 14 was obtained by X-ray crystallographic analysis⁹ (Fig. I). Conversion of 14 into norilludane skeleton was achieved by treatment with AgOAc in AcOH (120°, 7hr) to give the desired $\Delta^{2(3)}$ -13-norilluden-7-one <u>16</u> in 47% yield. Similar treatment of the mixture of 14 and 15 (14/15=3/1) gave the same result. 16⁵; 0i1; nmr(CC1₄) δ 0.60, 1.56 (4H, m), 1.04, 1.15 (each 3H, s), 1.38 (3H, broad s, long range coupling with C-9H, $J_{9-12}=2.5Hz$), 2.02 (1H, q, 8 β H, $J_{8B-9}=13Hz$, $J_{8\alpha-8\beta}=14Hz$), 2.16 (2H, broad s, 1 α and 1 β H), 2.55 (1H, q, 8 α H, J_{8 α -9}=5Hz, J_{8 α -8 β}=14Hz), 2.80 (1H, broad m, 9-H); ir(neat) 1705 cm⁻¹. The nmr data¹⁰ suggested for <u>16</u> a partial conformation 16a with an axial C-9H. Methylenation of norilludenone 16 with $ph_3P=CH_2$ (from $ph_3PCH_3Br^{-t}AmONa$) in benzene (rt, 30min) furnished $\Delta^{2(3),7(13)}$ -illudadiene 1⁵ In 90% yield. 1; Oil; nmr(CCl₄) δ0.20~1.25 (4H, m), 1.01, 1.10 (each 3H, s), 1.27 (3H, broad s), 4.35 (2H, m); ir(neat) 3080, 1645, 880cm⁻¹. Finally methylation of 16 with MeMgI in ether (0°, 30min and rt, 1hr) afforded stereoselectively $\Delta^{2(3)}$ -7 β -illudenol 2^{5} in 85% yield. 2; 0il; nmr(CCl₄) $\delta 0.20 \sim 1.50$ (4H, m), 1.05, 1.07, 1.15 (each 3H, s), 1.23 (3H, m); ir(neat) 3440 cm^{-1} . The β orientation of the hydroxyl group of 2 was derived from the lanthanide induced shift data, which indicated one of the C-8 proton with a large S¹¹ value exhibits a large J_{8-9} value¹⁰ of 11Hz [Eu(fod)₃/2=0.294; δ (CCl₄) 5.05 (S=8.8, 1H, broad m, 9-H), 6.41 (S=17.3, 1H, q, $J_{8\beta-9}$ =11Hz, $J_{8\alpha-8\beta}$ =12Hz, 8 β H), 7.10 (S=18.2, 1H, q, $J_{8\alpha-9}$ =6Hz, $J_{8\alpha-8\beta}$ =12Hz, 8 α H)].

References and footnotes

- Δ²⁽³⁾-7-Illudenyl cation, which in turn is derived through a protoilludane compound, has been suggested as a biosynthetic precursor for illudins²;
 M. Anchel, T.C.McMorris and P.Singh, Phytochemistry, 9, 2339 (1970);
 J.R.Hanson, T.Marten and R.Nyfeler, J.C.S., Perkin I, 876 (1976).
- T.Matsumoto, H.Shirahama, A.Ichihara, Y.Fukuoka, T.Mori and M.Watanabe, Tetrahedron, <u>21</u>, 2671 (1965) and references cited. See also G.A.Cordell, Chem.Rev., <u>76</u>, 425 (1976).
- 3. Y.Ohfune, H.Shirahama and T.Matsumoto, Tetrahedron Lett., 4377 (1975).
- 4. D.C.Owsley and J.J.Bloomfield, J.C.S., C, 3445 (1971).
- 5. Satisfactory ir, nmr and mass spectral data as well as elementary analytical data were obtained.
- 6. Obtained as a mixture of epimers at C-3 position and used in the next step as such. The epimer was readily epimerized (AcOH/Δ or chromatography on SiO₂) to give an equilibrium mixture. δ(CCl₄): Major isomer 5a; 1.12, 1.25, 1.38 (each s), 3.92 (s): minor isomer 5b; 4.06 (broad s). 5a/5b=3/1. Major isomer 9a; 1.25 (s), 4.26 (t, J=6Hz): minor isomer 9b; 1.40 (s), 4.20 (dd, J=3 and 4Hz). 9a/9b=1.8/1.
- 7. Y.Yamada, H.Uda and K.Nakanishi, Chem.Commun., 423 (1966).
- 8. Formation of α -keto carbenium ions under special conditions; J.P.Begue, D.Bonnet, M.Charpentier-Morize and C.Pardo, Tetrahedron, <u>31</u>, 2505 (1975).
- 9. This is the first demonstration of the detailed conformation of the cisanti-cis protoilludane skeleton. The details of the X-ray analysis will be published elsewhere.
- 10. The peaks were assigned as shown in the parentheses by extensive decoupling experiments.
- 11. A.F.Cockerill and D.M.Rackham, Tetrahedron Lett., 5149 (1970).